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A 1.5-W solid-state power amplifier (SSPA) has been demonstrated as part of an

effort to develop and evaluate state-of-the-art transmitter and receiver components

at 32 and 34 GHz for future deep space missions. Output power and efficiency

measurements for a monolithic millimeter-wave integrated circuit (MMIC)-based
SSPA are reported. Technical design details for the various modules and a thermal

analysis are discussed, as well as future plans.

I. Introduction

The Deep Space Network is developing telecommuni-
cation capability at a2 GHz (Ka-band) with expected im-

provement of as much as 8 dB over tile current perfor-

mance at 8 GHz (X-band). A proof-of-concept 32-GHz
solid-state power amplifier (SSPA) with an output power

of 1.56 W has been designed and demonstrated for future

spacecraft applications.

The objective was to demonstrate useful RF output

power of greater than 1.5 W with an efficiency greater than

15 percent at 32 GHz. We also wanted to use state-of-the-

art components that were readily available from vendors

and to build a compact system that could be interfaced

with the deep space transponder.

The development of this SSPA provided practical
hands-on experience in the incorporation of Ka-band

monolithic millimeter-wave integrated circuits (MMICs)
into an amplifier architecture. Other useful information
was obtained in the areas of mechanical and electronic

system integration and high-power RF testing. The com-

pleted hardware from this effort is currently being used as

a stepping stone toward 32-GHz SSPAs having higher effi-

ciencies (>25 percent) and output power capacity (1.7 W).

II. Subsystem Design

Some initial goals and requirements for the 32-GHz

SSPA were established based upon future deep space ntis-

sion requirements. An RF output power level of 1.5 W

having greater than 15 percent power added efficiency was

selected, which would make the SSPA a good candidate

for insertion into the Pluto Fast Flyby mission. The SSPA

would also require 31 dB of RF gain in order to interface
with the deep space transponder that provides 1 mW of

input power to the SSPA.

We surveyed industry to find 32-GHz high-power de-

vices (>0.5 W) having efficiencies greater than 25 per-

cent in order to meet these requirements and came up
with three possible vendors. GE Aerospace has 1.0-W

32-GHz pseudomorphic high electron-mobility transistor

(PHEMT) discrete devices with 30 percent power added

efficiency, but these were not available for use outside

of GE Aerospace. Raytheon initially claimed to have
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0.5-W PHEMT devices with 30 percent power added ef-

ficiency; however, sample parts only delivered 0.4 W and

fell short, of our requirements. Alpha has 0.5-W metal-

semiconductor field effect transistor (MESFET) MMIC de-

vices having 25 percent power added efficiency and ll-dB

gain, which were available for immediate purchase. We

selected the Alpha AA035-P2 0.5-W MMIC as our power

amplifier component.

A. SSPA Architecture

The output from the MMICs can be combined in dif-

ferent ways to meet the 1.5-W output power requirement.
Several architectures for the SSPA were considered, but

the topology shown in Fig. 1 provided the best perfor-

mance in terms of gain and power added efficiency, and

used the fewest number of parts (based on the parts avail-

able at that time). The output stage for the SSPA consists

of four 0.5-W power amplifier MMICs (Alpha AA035-P2)

where the outputs of these four devices are combined in

a corporate, in-phase, Gysel [1] microstripline combiner.

The input signal to the SSPA is amplified by a preampli-

fier MMIC (Alpha AA035-P3) followed by' a high-power

driver MMIC (Alpha AA035-P2) and split through a four-

way Gysel microstripline divider to feed each of the four

output stages. A further consideration in det.ermining tile

optimal architecture is the distribution of gain through
the cascaded chain. Our SSPA design ensured that each

amplifier would enter gain compression at the same unit

input drive level. If the driver amplifier were to saturate
before the output stages, the desired output power would
not be achieved. Table 1 shows the gain distribution and

efficiency calculation for this 1.5-W RF alnplifier architec-

ture, and Fig. 1 shows the associated block diagram.

The mechanical interfaces were determined by consid-

ering the other system components (transponder and an-

tenna) as well as performance and overall size. A wave-

guide provides the lowest loss, and minimizing the loss

(especially at the output) is important in maximizing tile
efficiency at the expense of larger size. The transponder

output, port is a coaxial connector, and the antenna in-

put port is a waveguide. At both the input and output of

the SSPA, a transition from waveguide to microstrip is re-

quired. At the input., a transition from coax to waveguide

is required to mate to the transponder.

B. MMIC Amplifiers

The preamplifier MMIC (Alpha AA035-P3, the first de-

vice in the chain) provides over half the RF gain of the

SSPA (17.9 dB). The frequency response and return loss

plot for the preamplifier is shown in Fig. 2. This MMIC
contains three identical cascaded MESFET stages with as-

sociated matching and bias circuitry to operate from a sin-

gle supply, all on a single 3.9-mm by 1.9-mm chip.

The power amplifier MMICs and driver amplifier

MMIC (Fig. 3) each deliver 0.5 W of RF power. The

frequency response and return loss plot for an individual

MMIC power amplifier is shown in Fig. 4. The output

power and power added efficiency for this power MMIC

is shown in Fig. 5, while the corresponding gain compres-
sion curve is shown in Fig. 6. This chip contains an input

stage of two MESFETs in parallel, each driving two of the
four MESFETs that make up the output stage. Power di-

viders, interstage matching networks, and bias networks

are all integrated onto the 3.9-mm by 3.1-mm chip.

An important design criterion when combining ampli-

tiers together in parallel to increase RF power is phase

matching within the amplifier channels. For a worst-

case phase imbalance between MMIC amplifiers of 4_, the

combined voltage adds vectorially so the total normalized

power of four amplifiers would be 4 cos 2 4k The power lost

due to phase imbalance is 4(1- cos 2 6)- Ideally, we would

like each amplifier to have the same insertion phase. For

each of the power amplifers we purchased, Alpha Indus-

tries provided us with scattering parameters with which

we determined the insertion phase for each amplifier. We

carefully selected amplifiers to maintain a phase balance

of -t-5 deg to keep this power loss less than 0.03 dB.

C. Power Dividers

The power combiners allow us to combine the power of
the four relatively low-power devices to achieve the desired

output power level, which is significantly higher than what
can be obtained with a single device. The power divider

requirements for this SSPA were small size (smaller than a

waveguide), low loss (less than 1.2 dB), good phase match

(less than 2 deg), and good port isolation (greater than

15 dB). Typical microstrip power combiners include tee
dividers, branchline and ratrace couplers, Wilkinson di-

viders, and Gysel dividers. Wilkinson and Gysel dividers

are the only type that provide both phase match and iso-

lation. A Gysel divider is capable of handling higher RF

power levels while maintaining phase match and isolation
because the isolation resistors are positioned to provide a

heat conduction path to the ground plane, whereas in the

Wilkinson divider, they do not.

The initial power divider shown in Fig. 7 was de-

signed using EEsof's Touchstone circuit analysis software.
Like the Wilkinson, it divides the power through two

75-ohm quarter-wave sections. The two isolation resis-

tors are joined into the remaining 75-ohm quarter-wave
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ring through 100-ohm quarter-wave lines. Compensation

for mismatches at the tee-junctions was incorporated into

the geometry of the divider by using 30-deg notch cutouts

[2]. A single two-way divider was fabricated at the David

Sarnoff Hybrid Processing Facility. Thin-film deposition

processes were used to fabricate the microstripline cir-
cuit and the thin-film isolation resistors onto the 0.25-ram

(10-mil)-thick alumina substrates. Tile measured inser-

tion loss, isolation, and phase match for the two-way di-

vider were 0.5 dB, 12 dB, and 2 deg, respectively. The

insertion loss is shown in Fig. 8. This circuit was also

analyzed using finite difference time domain (FDTD), a

full-wave analysis method for solving Maxwell's equations

that include electromagnetic effects not accounted for in

Touchstone's circuit sinmlator. FDTD analysis predicted a

0.4-dB insertion loss as compared to 0.2 dB on Touchstone
(Fig. 9).

preamplifier and output power amplifier modules are lo-

cated on the top side of the housing (Fig. 11), and dc

wiring from the Cannon-D connector to the miniature feed

throughs on the modules are routed on the bottom side

(Fig. 12). Large 0.1-pF ceramic bypass capacitors that sta-

bilize the amplifiers against low-frequency oscillation are

also located in the bottom compartment.

The end pieces are WR-28 waveguides incorporating

E-plane waveguide probes. These probes are of the same

design as those used in the DSS-13 experimental 32-

GHz low-noise HEMT amplifiers. The probes are con-

nected to the microstrip transmission lines via glass bead

feed throughs (the same as those used in Wiltron's K-

connectors) soldered into the housing. Figure 13 shows a

cross-sectional view of the transition and E-plane probe

assembly.

III. SSPA Integration

The SSPA was designed such that two separate ampli-

tier modules, a preamplifier/driver module and an output
module, could be tested and then dropped into a hous-

ing to be integrated with the input and output waveguide

ports and bias supply connections.

A. Amplifier Modules

The amplifier modules consist of carriers that integrate

the MMIC devices with passive transmission line circuits,

RF decoupling capacitors, and de bias ports. Molybde-
num was selected as the carrier material because its ther-

mal expansion coefficient is well matched to the alumina

substrates mounted to it. In addition, molybdenum pro-

vides higher heat conduction for the thermal management

of the power devices. Substrates and devices are mounted

with conductive silver epoxy into recessed channels in the

carrier, which helps suppress potential RF moding. Bias

voltages are injected through the bottom of the carrier

with miniature dc feed throughs. Two parallel bypass ca-

pacitors are located adjacent to the MMIC de bonding

pads. The small 0.6-pF bypass capacitors located clos-
est to the MMIC device filter frequencies above 20 GHz,

while the 100-pF capacitor provides higher-level bypassing

at the lower frequencies. This filtering effect was modeled

using EEsof's Touchstone and is shown in Fig. 10, where

the filter response is shown with and without the 0.6-pF

capacitor.

B. Housing

The SSPA housing was designed as a double-sided unit

with two end pieces containing the waveguide ports. The

C. Thermal Issues

A thermal analysis was performed for the SSPA; it in-
dicated that the maximum expected junction temperature

for a 50 deg C baseplate (preliminary Pluto specification)
would be 82 deg C provided that gold/tin eutectic sol-

der is used to secure the MMICs to a molybdenum car-

rier. To speed up the assembly process time, we used con-

ductive silver epoxy to secure the MMICs, bypass capaci-

tors, and microstrip circuits. By using conductive epoxy,

the thermal analysis predicted that the junction tempera-

tures would change from 82 deg C to somewhere between

92-115 deg C depending upon the epoxy thickness and

consistency. For our initial benchtop demonstration, the

breadboard SSPA is held at room temperature (20 deg C),

so the MMICs operate with junction temperatures of 62-

85 deg C, and the use of silver epoxy is not a thermal

concern. Typically, junction temperatures should be kept

at or below 110 deg C for acceptable reliability in long-

term spacecraft missions.

The thermal model used actual layout dimensions for

all of the heat producing field effect transistors (FETs)
within the MMICs placed on carriers within the housing.

Table 2 shows the thermal conductivity values of the dif-

ferent materials used in the electronics package.

IV. SSPA Performance

The complete SSPA performance parameters are sum-
marized in Table 3 and discussed in detail below. The test

setup used for integration and test is shown in Fig. 14. In

order to make the single-frequency (31.5-GHz) measure-

ments to generate the compression curves (Figs. 15 and
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16), the sweep oscillator source was used in conjunction

with a power meter and calibrated waveguide coupler only.

Output power was measured to be 1.56 W with a corre-

sponding power added efficiency of 15.4 percent. Figure 15

shows output power and power added efficiency plotted

against input drive level. The amplifier was tuned to have

maximum power at 31.5 GHz; however, it can be tuned

for the same performance at 32 GHz.

Figure 16 shows SSPA gain and power added efficiency

plotted against drive level. Note that in order to achieve
the 1.5-W output power level, the SSPA is driven well into

compression. The corresponding gain compression level at

1.5-W output power is 3.5 dB. At the maximum output

power of 1.56 W, the corresponding compression level is
8.7 dB.

Figure 17 shows a swept frequency response from 27.5

37.5 GHz. As mentioned above, the peak power occurs at

31.5 GHz and is tunable from approximately 31-33 GHz by

using gold ribbon stubs located on the power divider trans-

mission lines. The active power devices (Alpha AA035P2-

00) have power gain variations of+1.2 dB from 30 34 GHz,

while the input and output power combiners have mini-

mum insertion loss in this frequency region. The preampli-

fier (Alpha AA035P3-00) has consistent gain flatness from

30-36 GHz and does not affect the response as severely as

the output devices. The input return loss was measured

to be 19 dB looking into the input waveguide port. The

output return loss was 12 dB and was measured at the

output waveguide flange.

V. Summary

A solid-state power amplifier operating at 31.5 GHz

with greater than 1.5 W total RF power and greater than

15 percent power added efficiency has been demonstrated

using existing devices. Fabrication of the hardware pro-

vided valuable practical experience in the area of MMIC

insertion. System-level issues for SSPAs were also ad-

dressed, including the impact of output losses on efficiency,

phase matching within the parallel amplifier channels, bias

circuit design, and system gain distribution.

Several areas have been identified for potential future

work. The advanced high-power discrete devices from GE

Aerospace (now Martin Marietta) having power added ef-

ficiencies of 30 percent have been integrated into an SSPA

output module with an output power of 1.7 W (25 deg C),

a corresponding power added efficiency of 27.8 percent,

and an RF gain of 7.3 dB. A discrete preamplifier section

could be designed to interface with this output module

and boost the RF gain up to 32 dB with an efficiency

of 27 percent. Additionally, in the near term, tile SSPA

described herein is being planned to be tested at low tem-

peratures (-100 deg C) to study improved output power

and efficiency behavior. This temperature range would

be easily achieved using passive radiative technology on a

spacecraft.
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Table 1. SSPA gain distribution and predicted performance parameters.

Component

dc power Compressed Net Output

consumption, gain, gain, power,

W dB dB dBm

Preamplifier 1.128

Driver amplifier 1.971

Two-way divider 0.000

Two-way divider 0.000

High-power amplifier 7.816

Two-way combiner 0.000

Two-way combiner 0.000

Waveguide transition 0.000

Isolator 0.000

17.23 17.23 20.23

7.64 24.87 27.87

-3.60 21.27 24.27

-3.50 17.77 20.77

7.19 24.96 27.96

2.50 27.46 30.46

2.40 29.86 32.86

-0.25 29.61 32.61

-0.15 29.46 32.46

Input paraxneters

Input power, 3.00 dBm

RF phase alignment, 10 deg

Calculated parameters

RF output power, 1.71 W

SSPA dc power, 10.92 W

SSPA efficiency, 15.66 percent

Table 2. Thermal conductivities used in

thermal analysis calculations.

Material
Thermal conductivity,

W/m-deg C

GaAs MMIC 44.1

AuSn eutectic solder 57.1

Silver epoxy 2.0 5.9

Molybdenum 133.8

Aluminum 157.4

Table 3. SSPA performance parameters.

Design parameter Measurement

Output power, W 1.56

Power added efficiency, percent 15.4

Small signal gain, dB 42.7

Total dc power, W 10.1

Input return loss, dB 19

Output return loss, dB 12
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Fig.3.Alpha0.5-WMMICpoweramplifierchip.
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Fig. 11. Photograph of the 32-GHz SSPA showing the RF component side.
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Fig. 12. Photograph of the 32-GHz SSPA showing the dc component side
and the waveguide input and output ports.
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The Ka-Band Link Experiment was the first demonstration of a deep-space com-

munications link in the 32- to 35-GHz band (Ka-band). It was carried out using the

Mars Observer spacecraft while the spacecraft was in the cruise phase of its mission

and using a 34-meter beam-waveguide research and development antenna at the

Goldstone complex of the DSN. The DSN has been investigating the performance

benefits of a shift from X-band (8.4 Gttz) to Ka-band (32 GHz) for deep-space com-

trnmications. The fourfold increase in frequency is expected to offer a factor of 3 to

10 improvement (5 to 10 dB) in signal strength for a given spacecraft transmitter

power and antenna size. Until recently, the expected benefits were based on perfor-

mance studies, with an eye to implementing such a link, but theory was transformed

to reMity when a 33.7-GHz Ka-band signal was received from the spacecraft by

DSS 13. This article describes the design and implementation of the Ka-Band Link

Experiment from the spacecraft to the DSS-13 system, as well as results from the

Ka-band telemetry demonstration, ranging demonstration, and long-term tracking

experiment. Finally, a preliminary analysis of comparative X- and Ka-band track-

ing results is included. These results show a 4- to 7-dB advantage for Ka-band using

the system at DSS 13, assuming such obstacles as antenna pointing loss and power

conversion loss are overcome.

I. Introduction

Theoretical studies in DSN telecommunications have

shown that utilizing Ka-band (32 GHz) over X-band

(8.4 Gtlz) on a spacecraft-to-ground link would yield a

benefit of 3 to 10 thnes the telemetered data for a given

spacecraft transponder weight, antenna size, and power

allocation [1,2]. a The enhancement comes from the in-

JR. L. Hortorr, ed., Ka-Band Deep Space Communications, JPL
D-4356 (internal document), Jet Propulsion Laboratory, Pasadena,
California, May 15, 1987.

creased antenna gain at slnaller wavelengths, but it is re-

duced by other factors such as higher atmospheric noise,

antenna performance deficiencies, and weather susceptibil-

ity at Ka-band.

Just as past transitions in the DSN from L-band

(0.96 GHz) to S-band (2.3 GHz) and later to X-band

yielded almost 20-dB improvements in link capacity, the

transition to Ka-band appears to be the next logical step in

the evolution of the DSN. The possibility of enhanced per-

formance led to the proposal of a Ka-band link experiment
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